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Lecture 1

Bifurcation: General Notions and

Application to NLS
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Setting of the Problem
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The nonlinear Schrödinger equation

Consider the evolution equation

i∂tψ + ∆ψ + g(x , ψ) = 0 (NLS)

for ψ = ψ(t, x) : [0,∞)× RN → C, N > 1.

We suppose that g ∈ C (RN × C,R) satisfies

g(x , eiθw) = eiθg(x ,w) for all x ∈ RN , θ ∈ R, w ∈ C

This property implies that g can be written in the form

g(x , ψ) = f (x , |ψ|2)ψ

which commonly occurs in applications ; in particular g(x , 0) ≡ 0.

The coefficient f (x , |ψ|2) enables one to model the response of a
nonlinear inhomogeneous medium to some field ψ.
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The NLS arises in numerous physical models, for instance Langmuir
waves in plasma, Bose-Einstein condensates, rogue waves, etc.

It is pervasive in nonlinear optics, where the theory has had
intimate interactions with the mathematical analysis of NLS since
its early days, cf. the discussion in G., Adv. Nonlin. Stud. 2010.

Important mathematical issues : existence (local and global),
asymptotic behaviour, stability, finite time blow up, scattering,
dynamical systems aspects, semiclassical limit, etc.

Some famous names associated with NLS: Ginibre, Velo, Cazenave,
Lions, Merle, Raphaël, Gérard, Weinstein, Bourgain, Strauss, Tao,
Vega, Ambrosetti, Malchiodi, etc.
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Standing waves of NLS

i∂tψ + ∆ψ + g(x , ψ) = 0 (NLS)

The equivariance of g with respect to the group {eiθ : θ ∈ R}
allows one to look for standing wave solutions of the form :

ψ(t, x) = eiλtu(x) with λ ∈ R and u ∈ H1(RN ,R)

This ansatz leads to the stationary equation

∆u + g(x , u) = λu, u ∈ H1(RN) (SNLS)

A solution of (SNLS) is a couple (λ, u) ∈ R× H1(RN).

Notice that we have a line of trivial solutions {(λ, 0) : λ ∈ R}.
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Bifurcation Theory
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Bifurcation

An important problem is the behaviour of solutions (λ, u) as the
parameter λ varies. Bifurcation points are values of λ where the
structure of the solution set changes.

Problem (SNLS) belongs to the family of abstract problems
defined as follows.

Let F ∈ C (X ,Y ), where X and Y are Banach spaces, X ⊂ Y , and
F (0) = 0. Consider

F (u) = λu, λ ∈ R (P)

We have a line of trivial solutions {(λ, 0) : λ ∈ R} ⊂ R× X .

Definition 1
λ ∈ R is a bifurcation point for problem (P) iff there is a sequence
{(λn, un)} ⊂ R× X such that λn → λ and un → 0 as n→∞, but
un 6= 0 for all n.
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Linearization, spectral analysis

F (u) = λu, λ ∈ R (P)

If in addition we suppose that F ∈ C 1(X ,Y ), it is natural to
approximate (P) in a neighbourhood of u = 0 by the linearized
problem

DF (0)u = λu (LP)

where DF (0) ∈ L(X ,Y ) is the Fréchet derivative of F at u = 0.

By the implicit function theorem, all bifurcation points belong to
σ(DF (0)), the spectrum of DF (0).
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Suppose that Y is a Hilbert space, X ⊂ Y a dense subspace, and
DF (0) : X ⊂ Y → Y is a selfadjoint operator.

Then
σ(DF (0)) ⊂ R can be decomposed as

σ(DF (0)) = σdisc(DF (0)) ∪ σess(DF (0))

where σdisc(DF (0)) is the discrete spectrum, i.e. the set of finite
multiplicity eigenvalues that are isolated in σ(DF (0)), and

σess(DF (0)) := σ(DF (0)) \ σdisc(DF (0))

is the essential spectrum of DF (0).

Bifurcation can thus occur from an eigenvalue of DF (0), or from
the essential spectrum of DF (0).
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Schrödinger operators

Let Y = L2(RN), X = H2(RN) and F : X → Y defined by

F (u)(x) := ∆u(x) + g(x , u(x))

where we suppose :

• g ∈ C (RN × R) and g(x , 0) = 0 for all x ∈ RN

• g(x , ·) ∈ C 1(R) for all x ∈ RN , with {∂2g(x , ·)}x∈RN

equicontinuous, ∂2g(·, s) ∈ L∞(RN) for all s ∈ R,

and q := ∂2g(·, 0) ∈ L∞(RN)

• appropriate growth assumptions on |g(x , s)| as |s| → ∞

Then F ∈ C 1(X ,Y ) and the linearization of (SNLS) is given by

∆u + q(x)u = λu
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The operator S : D(S) = H2(RN) ⊂ L2(RN)→ L2(RN) defined by

(Su)(x) := ∆u(x) + q(x)u(x)

is called a Schrödinger operator.

Defining Λ := supσ(S) and α := lim
|x |→∞

q(x), we have

σess(S) = (−∞, α], α 6 Λ 6 ‖q‖L∞ , Λ ∈ σ(S)

Furthermore, Λ is given by the explicit formula

Λ = − inf
u∈H2(RN)

u 6=0

∫
RN |∇u|2 − q(x)u2 dx∫

RN u2 dx

If Λ > α then Λ ∈ σdisc(S). In this case, Λ is the principal
eigenvalue of S , and S has a corresponding eigenfunction ϕΛ > 0.
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q(x)

0

α

x

N = 1, q(x) > α = lim
|x |→∞

q(x)

σ
(

d2

dx2
+ q(x)

)

σess

0 α Λ R
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Bifurcation from an eigenvalue

(A) Bifurcation from eigenvalues was first obtained by
Krasnosel’skii in 1956. He used topological degree to show that
there is bifurcation from all eigenvalues of odd multiplicity. Note
that, for Schrödinger operators, the principal eigenvalue is simple.

(B) Krasnosel’skii’s result was extended by Rabinowitz in 1971,
who proved that global branches of solutions emanate from the
bifurcation points.

(C) Moreover in 1971, Crandall and Rabinowitz showed that,
locally, the branch bifurcating from a simple eigenvalue is a
continuous curve.

(A) and (B) used the Leray-Schauder degree, which requires some
form of compactness. These results have later been extended to
non-compact cases. Result (C) is purely analytical, and more
flexible in that respect.
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locally, the branch bifurcating from a simple eigenvalue is a
continuous curve.

(A) and (B) used the Leray-Schauder degree, which requires some
form of compactness. These results have later been extended to
non-compact cases. Result (C) is purely analytical, and more
flexible in that respect.
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Bifurcation from the essential spectrum

The first results go back to the late 1970s/early 1980s, mainly by
Charles A. Stuart (see also Küpper & Riemer), who proved
bifurcation by purely variational methods.

To this day, there is no general abstract theory, unlike that dealing
with bifurcation from eigenvalues. The behaviour of the solutions
as they approach the line of trivial solutions seems to depend very
specifically on the particular nature of the problem, and has to be
studied by ad hoc methods in each case.

As shall be seen later on, smooth curves of positive solutions
bifurcating from the essential spectrum can be obtained by
analytical methods (cf. Stuart 1985, Stuart-G. 2008, G. 2009).

Bifurcation and Stability for NLS November 2013 14



Bifurcation from the essential spectrum

The first results go back to the late 1970s/early 1980s, mainly by
Charles A. Stuart (see also Küpper & Riemer), who proved
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Bifurcation from the principal eigenvalue

Consider the one-dimensional problem

{
u′′(x) + g(x , u(x)) = λu(x), x ∈ R

lim
|x |→∞

u(x) = 0 (E1)

We suppose :

• g ∈ C 1(R2) and g(x , 0) = 0 for all x ∈ R

• g(−x , s) = g(x , s) for all (x , s) ∈ R2

• g(x , s) is decreasing in x > 0 and increasing in s > 0

• 0 < s−1g(x , s) < ∂2g(x , s) for x ∈ R and s > 0

• q = ∂2g(·, 0) ∈ C 1(R) and q(0) > 0 = lim
|x |→∞

q(x)

As earlier, we consider the problem in X = H2(R).

Λ = supσ(S) > 0 = supσess(S) is the principal eigenvalue of S .
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Example

A typical example of a function g satisfying the above hypotheses
is given by

g(x , s) = q(x)s + V (x)|s|p−1s

with p > 1 and appropriate assumptions on q,V ∈ C 1(R).

Theorem 1 (Jeanjean-Stuart, Adv. Diff. Equ. 1999)

There exist λ̄ ∈ (Λ,∞] and a curve u ∈ C 1
(
(Λ, λ̄),H2(R)

)
such

that (λ, u(λ)) is a solution of (E1) for all λ ∈ (Λ, λ̄), with u(λ)(x)
positive, even, and strictly decreasing in x > 0.

Furthermore,

lim
λ↘Λ
‖u(λ)‖H2 = 0 and lim

λ↗λ̄
‖u(λ)‖H2 =∞
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Proof

1. Crandall-Rabinowitz  local bifurcation from Λ > 0.

2. Implicit function theorem  global continuation.
3. A priori estimates  asymptotic behaviour of the solution curve.

Remarks

This approach is purely analytical and yields a smooth curve of
solutions.

By topological arguments, (global) connected sets of solutions can
be obtained under weaker assumptions, see for instance
Jeanjean-Lucia-Stuart 1999.

The hypothesis q(0) > lim|x |→∞ q(x) ensures that Λ is a (simple)
eigenvalue. Without this assumption, we can consider bifurcation
from the essential spectrum of S .
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Lecture 2

Bifurcation from the Essential Spectrum
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The Power Nonlinearity
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Consider the problem

{
∆u(x) + V (x)|u(x)|p−1u(x) = λu(x), x ∈ RN

lim
|x |→∞

u(x) = 0 (E2)

for N > 2.

We will use the following hypotheses :

(V1) V ∈ C 1(RN)

(V2) there exists b ∈ (0, 2) such that

1 < p < 4−2b
N−2 (:=∞ if N = 2)

lim
|x |→∞

|x |bV (x) = 1 and lim
|x |→∞

|x |b[x · ∇V (x) + bV (x)] = 0

(V3) V is radial with V (r) > 0 and V ′(r) < 0 for r > 0

(V4) r
V ′(r)

V (r)
is decreasing in r > 0 (and so ↘ −b by (V2))
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Example

V (x) =
1

(1 + |x |2)b/2
satisfies all of the above assumptions.

Hence, problem (E2) corresponds to (SNLS) with

g(x , s) = V (x)|s|p−1s and q(x) = ∂2g(x , 0) ≡ 0

Thus
S = ∆ and σ(S) = σess(S) = (−∞, 0]

and so S has no eigenvalues.

Nevertheless, the following result holds in X = H1(RN).
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Theorem 2 (Stuart-G., DCDS 2008)

We suppose (V1) and (V2).

There exist λ0 > 0 and a local curve u ∈ C 1
(
(0, λ0),H1(RN)

)

such that (λ, u(λ)) is a solution of (E2) for all λ ∈ (0, λ0), with
u(λ) ∈ C 2(RN) ∩ L∞(RN) and u(λ) > 0 on RN .

Furthermore,

lim
λ↘0
‖u(λ)‖H1 =

{
0 if 1 < p < 1 + 4−2b

N

∞ if 1 + 4−2b
N < p < 1 + 4−2b

N−2

Terminology

We say that there is bifurcation from the line of trivial solutions
when ‖u(λ)‖H1 → 0 and asymptotic bifurcation, or bifurcation
from infinity, when ‖u(λ)‖H1 →∞.
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Theorem 3 (G., Calc. Var. 2010)

Suppose (V1) to (V4).

Then the curve of Theorem 2 can be extended to a global branch
u ∈ C 1

(
(0,∞),H1(RN)

)
such that, for all λ ∈ (0,∞) :

u(λ) is the unique positive radial solution of (E2) ;

u(λ) ∈ C 2(RN) ∩ L∞(RN) and u(λ) is strictly radially decreasing.

Moreover,

lim
λ↗∞

‖u(λ)‖H1 =∞ for all 1 < p < 1 + 4−2b
N−2

Application

The case N = 1, p = 3 yields existence of travelling waves in
self-focusing planar waveguides with ‘Kerr materials’, for arbitrary
high/low power beams, see G., Adv. Nonlin. Stud. 2010.
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Proofs

We start by the scaling

λ = k2, u(x) = kθv(y), y = kx , for k > 0, θ = 2−b
p−1

(E2) becomes

∆v − v + k−bV (y/k)|v |p−1v = 0, k > 0 (1)

Then by (V2)

lim
k→0

k−bV (y/k) = |y |−b|y/k |bV (y/k) = |y |−b ∀ y 6= 0

suggesting the limit problem

∆v − v + |y |−b|v |p−1v = 0 (2)

which has a unique positive radial solution v0 ∈ H1(RN).
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We then apply the implicit function theorem to the function
F : R× H1(RN)→ H−1(RN) defined by

F (k, v) :=

{
∆v − v + |k |−bV (y/|k |)|v |p−1v , k 6= 0
∆v − v + |y |−b|v |p−1v , k = 0

at the point (k , v) = (0, v0) ∈ R× H1(RN), where
D2F (0, v0) : H1 → H−1 is an isomorphism (non-degeneracy),
which yields a branch of solutions (k, v(k)) to F (k , v) = 0 (with
|k| < k0 small).

Going back to the original variables (λ, u), we then get a local
branch of solutions (λ, u(λ)) of (E2), for all 0 < λ < λ0 = k2

0 . The
asymptotic behaviour as λ→ 0 follows from the change of
variables, using v(k)→ v0 in H1 as k → 0.
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To prove Theorem 3, one shows that the local branch given by
Theorem 2 can be extended indefinitely to a C 1 curve
parametrized by λ > 0.

One starts by proving that, under hypotheses (V1) to (V4), for all
λ > 0, there exists a unique positive radial solution uλ ∈ H1(RN)
of (E2) and that, for 0 < λ < λ0, this solution coincides with the
solution u(λ) of Theorem 2.

It can then be shown that uλ is a non-degenerate solution, for all
λ > 0. The IFT can thus be applied to each point (λ, uλ), and one
finally concludes that the branch started in Theorem 2 extends
indefinitely.
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Remarks

This method is purely analytical and yields strong conclusions :
smooth curves, precise asymptotic behaviour and monotonicity of
the branch, etc. These properties will be useful to study the
stability of standing waves of (NLS).

Bifurcation from the essential spectrum can be obtained under
weaker assumptions, of course with weaker conclusions.

Purely variational arguments (see e.g. Stuart ’82 ’88) yield
sequences of solutions converging to the line of trivial solutions
(this is the weakest possible notion of bifurcation, corresponding
exactly to Definition 1).

On the other hand, topological methods yield connected sets of
solutions (which are not necessarily arcwise connected), see for
instance Toland ’82, Giacomoni ’98.
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Bifurcation from the Essential Spectrum for

More General Nonlinearities
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A perturbative approach

Theorem 2 can be extended to more general nonlinearities than
V (x)|u|p−1u by using a perturbative method.

Consider the problem

{
∆u + g(x , u) = λu, x ∈ RN

lim
|x |→∞

u(x) = 0 (E3)

for N > 2, with

g(x , s) = V (x)|s|p−1s + r(x , s)

where V and p satisfy (V1), (V2), and the remainder r satisfies
assumptions such that the asymptotic behaviour (as s → 0 and
|x | → ∞) of g be similar to that of V (x)|s|p−1s.

Then Theorem 2 still holds for (E3), cf. G., JDE 2009.
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Example

This approach allows one to handle a sum of powers

g(x , s) = V (x)|s|p−1s +
m∑

i=1

Zi (x)|s|qi−1s

if, for i = 1, . . . ,m, there holds

Zi ∈ C 1(RN), |x |bZi (x) is bounded, and qi > p

It also covers the asymptotically linear case

g(x , s) = V (x)
|s|p−1

1 + |s|p−1
s (?)

that we will now study thoroughly. Hence, we already know that
there is (local) bifurcation from the line of trivial solutions for NLS
with the nonlinearity (?), provided 1 < p < 1 + 4−2b

N .
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Asymptotic Bifurcation for the

Asymptotically Linear NLS
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The asymptotically linear NLS

i∂tψ + ∆ψ + f (x , |ψ|2)ψ = 0 (NLS)

∆u + f (x , u2)u = λu, u ∈ H1(RN) (SNLS)

For simplicity, we suppose that f has the form

f (x , s2) = V (x)
sp−1

1 + sp−1
, x ∈ RN , s > 0

for some V ∈ C (RN ,R+) ∩ L∞(RN ,R+) and p > 1.

Then the equation (NLS) is termed asymptotically linear :

f (x , s2)→ V (x) as s →∞

Applications : nonlinear waveguides with saturable refractive index.
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Asymptotic linearization

We call asymptotic linearization of (SNLS) the equation

∆u + V (x)u = λu, u ∈ H1(RN) (AL)

Let
λ∗ := lim sup

|x |→∞
V (x) ∈ [0,∞)

and suppose that

λ∞ := − inf
u∈H1(RN)

u 6=0

∫
RN |∇u|2 − V (x)u2 dx∫

RN u2 dx
> λ∗

Then σess(AL)⊂ (−∞, λ∗]

and λ∞ is the principal eigenvalue of (AL).
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V (x)

0

λ∗

x

N = 1, V (x) > λ∗ = lim
|x |→∞

V (x)

σ
(

d2

dx2
+ V (x)

)

σess

0 λ∗ λ∞ R
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Inversion

Let X := W 2,q(RN), Y := Lq(RN), q ∈ [2,∞) ∩ (N2 ,∞),
and ‖ · ‖ the usual norm of X .

For N = 1 we can put q = 2, i.e. X = H2(R).

Rewriting (SNLS) as

∆u + V (x)u + h(x , u)u = λu with h(x , s) := f (x , s2)− V (x)

and performing the inversion u 7→ v := u/‖u‖2 yields

∆v + V (x)v + h(x , v/‖v‖2)v = λv (?)

Now bifurcation for (?) from v = 0 at λ = λ∞ (the principal
eigenvalue of (AL)) is in principle equivalent to asymptotic
bifurcation for (SNLS) at λ = λ∞.

Bifurcation and Stability for NLS November 2013 36



Inversion

Let X := W 2,q(RN), Y := Lq(RN), q ∈ [2,∞) ∩ (N2 ,∞),
and ‖ · ‖ the usual norm of X .

For N = 1 we can put q = 2, i.e. X = H2(R).

Rewriting (SNLS) as

∆u + V (x)u + h(x , u)u = λu with h(x , s) := f (x , s2)− V (x)

and performing the inversion u 7→ v := u/‖u‖2 yields

∆v + V (x)v + h(x , v/‖v‖2)v = λv (?)

Now bifurcation for (?) from v = 0 at λ = λ∞ (the principal
eigenvalue of (AL)) is in principle equivalent to asymptotic
bifurcation for (SNLS) at λ = λ∞.

Bifurcation and Stability for NLS November 2013 36



Inversion

Let X := W 2,q(RN), Y := Lq(RN), q ∈ [2,∞) ∩ (N2 ,∞),
and ‖ · ‖ the usual norm of X .

For N = 1 we can put q = 2, i.e. X = H2(R).

Rewriting (SNLS) as

∆u + V (x)u + h(x , u)u = λu with h(x , s) := f (x , s2)− V (x)

and performing the inversion u 7→ v := u/‖u‖2 yields

∆v + V (x)v + h(x , v/‖v‖2)v = λv (?)

Now bifurcation for (?) from v = 0 at λ = λ∞ (the principal
eigenvalue of (AL)) is in principle equivalent to asymptotic
bifurcation for (SNLS) at λ = λ∞.

Bifurcation and Stability for NLS November 2013 36



Inversion

Let X := W 2,q(RN), Y := Lq(RN), q ∈ [2,∞) ∩ (N2 ,∞),
and ‖ · ‖ the usual norm of X .

For N = 1 we can put q = 2, i.e. X = H2(R).

Rewriting (SNLS) as

∆u + V (x)u + h(x , u)u = λu with h(x , s) := f (x , s2)− V (x)

and performing the inversion u 7→ v := u/‖u‖2 yields

∆v + V (x)v + h(x , v/‖v‖2)v = λv (?)

Now bifurcation for (?) from v = 0 at λ = λ∞ (the principal
eigenvalue of (AL)) is in principle equivalent to asymptotic
bifurcation for (SNLS) at λ = λ∞.

Bifurcation and Stability for NLS November 2013 36



Inversion

Let X := W 2,q(RN), Y := Lq(RN), q ∈ [2,∞) ∩ (N2 ,∞),
and ‖ · ‖ the usual norm of X .

For N = 1 we can put q = 2, i.e. X = H2(R).

Rewriting (SNLS) as

∆u + V (x)u + h(x , u)u = λu with h(x , s) := f (x , s2)− V (x)

and performing the inversion u 7→ v := u/‖u‖2 yields

∆v + V (x)v + h(x , v/‖v‖2)v = λv (?)

Now bifurcation for (?) from v = 0 at λ = λ∞ (the principal
eigenvalue of (AL)) is in principle equivalent to asymptotic
bifurcation for (SNLS) at λ = λ∞.

Bifurcation and Stability for NLS November 2013 36



Truncation

The mapping

v 7→
{
h(·, v/‖v‖2)v , v 6= 0

0, v = 0

is continuous from X to Y .

However, it is not differentiable at v = 0 and so (AL) is not the
linearization of (?) stricto sensu.

Moreover, this mapping is not compact, which makes impossible to
apply degree theory in a straightforward way.

Nevertheless, for all n ∈ N, the truncated problem

(∆ + V − λ)v + χ{|x |6n}h(x , v/‖v‖2)v = 0 (?n)

can be linearized at v = 0, and its linearization is (AL).

Furthermore, v 7→ χ{|·|6n}h(·, v/‖v‖2)v is compact.
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Global bifurcation

On the other hand,

(λ∗,∞) 3 λ 7→ L(λ) := ∆ + V − λ

defines a C 1 family of Fredholm operators of index 0, such that

L′(λ∞) ker L(λ∞)⊕ rge L(λ∞) = Y and dim ker L(λ∞) = 1

A global bifurcation theorem of Stuart & Zhou (2006) can then be
applied, yielding a connected set Cn ⊂ R× X of positive solutions
of (?n), bifurcating from the point (λ∞, 0), for all n ∈ N.

This global result is based on a topological degree of Rabier &
Salter (2005), dealing with compact perturbations of Fredholm
operators of index 0.
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X

0 λ∗ λ∞
R
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Suitable a priori bounds then allow one to pass to the limit as
n→∞ and to obtain a connected set C ⊂ R× X of positive
solutions of the inverted problem (?).

The inversion can then be used to go back to the original variables,
which yields

Theorem 4 (G., NoDEA 2013)

There exists a continuum S ⊂ R× X of positive solutions of
(SNLS) with the following properties :

(i) PS = (λ∗, λ∞), where P (λ, u) := λ.

(ii) S is bounded away from R× {0}.
(iii) For any {(λn, un)} ⊂ S such that λn → λ as n→∞, there

holds

lim
n→∞

‖un‖Lq(RN) = lim
n→∞

‖un‖L∞(RN) =∞ ⇐⇒ λ = λ∞
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The inversion approach goes back to Rabinowitz (1973) and
Toland (1973) in two independent papers. It is essentially based on
the global bifurcation theory of Rabinowitz (1971).

However, Rabinowitz’s theory relies upon the Leray-Schauder
degree, well adapted to handle problems with some compactness.
Various extensions have since enlarged the scope of problems that
can be dealt with by the topological approach, including problems
without compactness, see e.g. Rabier & Salter (2005).

Nevertheless, once an appropriate topological degree has been
defined, the strategy always follows Rabinowitz’s very closely. In
particular it only provides connected sets of solutions.

Under stronger assumptions, in dimension N = 1, we will now
show that global bifurcation actually occurs along a continuous
(even smooth) curve of solutions.
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The 1-dimensional Case
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A continuous curve

u′′ + f (x , u2)u = λu, u ∈ H1(R) (SNLS)

f (x , s2) = V (x)
sp−1

1 + sp−1

If we suppose V even and decreasing on [0,∞), then the positive
solution (λ, uλ) ∈ S is unique, for all λ ∈ (λ∗, λ∞), and satifies

uλ even and u′λ < 0 on (0,∞).

A compactness argument then shows that

S = {(λ, uλ) : λ ∈ (λ∗, λ∞)}

is a continuous curve.
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0 λ∗ λ∞
R
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Continuation down to u = 0

Let us further suppose that

V (x) ∼ |x |−b as |x | → ∞ for some b ∈ (0, 1)

and that 1 < p < 5− 2b.

In particular λ∗ = lim
|x |→∞

V (x) = 0.

The perturbative approach presented earlier then shows that there
is bifurcation at (λ, u) = (0, 0).

We thus have bifurcation from a point of the essentiel spectrum of
the linearization

u′′ = λu
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Non-degeneracy

If we assume, in addition, that V is C 1 and V ′ < 0 on (0,∞),
then the linearized operator Tλ : H1(R)→ H−1(R),

Tλv := v ′′ + [f (x , u2
λ) + 2∂2f (x , u2

λ)u2
λ]v − λv

is an isomorphism, for all λ ∈ (0, λ∞).

Comparison arguments applied to the equations satisfied by uλ and
u′λ indeed show that Tλv = 0 =⇒ v = 0.

Hence, applying the implicit function theorem to each point
(λ, uλ), we see that, in fact,

(0, λ∞) 3 λ 7→ uλ ∈ H1(R) is a C 1 map
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Theorem 5 (G., EECT 2013)

Suppose that V ∈ C 1(R) is even, V ′ < 0 on (0,∞), and that

V (x) ∼ |x |−b as |x | → ∞ for some b ∈ (0, 1)

with 1 < p < 5− 2b.

Then there exists u ∈ C 1
(
(0, λ∞),H1(R)

)
such that, for all

λ ∈ (0, λ∞), (λ, uλ) is the unique positive even solution of
(SNLS), and there holds

lim
λ→0
‖uλ‖H1(R) = 0 and lim

λ→λ∞
‖uλ‖H1(R) =∞

In fact, uλ ∈ C 2(R) ∩ H2(R) with u′λ < 0 on (0,∞), and
uλ, u

′
λ → 0 exponentially as |x | → ∞.
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Lecture 3

Stability of Standing Waves
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The 1-dimensional evolution equation

Let us now go back to the time-dependent equation

i∂tψ + ∂2
xxψ + f (x , |ψ|2)ψ = 0 (NLS)

for

(PP) f (x , s2) = V (x)sp−1 or (AL) f (x , s2) = V (x)
sp−1

1 + sp−1

with V ∈ C 1(R) even, V ′ < 0 on (0,∞),

V (x) ∼ |x |−b as |x | → ∞ for some b ∈ (0, 1)

and

x 7→ x
V ′(x)

V (x)
decreasing on (0,∞), with x

V ′(x)

V (x)
↘ −b, x →∞

We also suppose that 1 < p < 5− 2b (‘subcritical’ nonlinearity).
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Example

V (x) =
1

(1 + |x |2)b/2
satisfies all of the above assumptions.

Under these hypotheses, we found solutions

ψλ(t, x) := eiλtuλ(x), 0 < λ < λ∞

{
=∞ (PP)

<∞ (AL)

where uλ ∈ H2(R) ∩ C 2(R) satisfies the stationary problem

{
u′′(x) + f (x , u(x)2)u(x) = λu(x), x ∈ R

lim
|x |→∞

u(x) = 0 (SNLS)

u(x) ≡ u(−x) > 0 and λ 7→ uλ is C 1
(
(0, λ∞),H1(R)

)
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Orbital stability

Since (NLS) is invariant under the action of the group
{eiθ : θ ∈ R}, one cannot expect the periodic solutions
ψλ(t, x) = eiλtuλ(x) to be stable in the usual sense.

Indeed, suppose λn → λ ∈ (0, λ0) and consider

ψλ(t, x) = eiλtuλ(x) and ϕn(t, x) = eiλntuλn(x)

Then ∀ δ > 0 ∃Nδ ∈ N s.t.

n > Nδ =⇒ ‖ϕn(0, ·)− ψλ(0, ·)‖H1 = ‖uλn − uλ‖H1 6 δ

However,

‖ϕn(t, ·)− ψλ(t, ·)‖H1 >
∣∣|eiλt − eiλnt |‖uλ‖H1 − ‖uλn − uλ‖H1

∣∣

=⇒ sup
t>0
‖ϕn(t)− ψλ(t)‖H1 > 2‖uλ‖H1 − δ for n > Nδ
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The notion of stability which is naturally suited to periodic
solutions is the following.

Definition 2
A standing wave ψ(t, x) = eiλtu(x) is called orbitally stable iff
∀ ε > 0 ∃ δ > 0 s.t. for any solution ϕ of (NLS) there holds

‖ϕ(0, ·)− u‖H1 6 δ =⇒ inf
θ∈R
‖ϕ(t, ·)− eiθu‖H1 6 ε ∀ t > 0

Intuitively : ϕ(0, ·) close to u =⇒
ϕ(t, ·) close to the orbit Θ(ψ) := {eiθu : θ ∈ R} ∀ t > 0.
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Θ(ψ)

t = 0
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To prove stability, we will use the general theory of
Grillakis-Shatah-Strauss (1987).

For any given λ0 ∈ (0, λ∞), the stability/instability of the standing
wave ψλ0 = eiλ0tuλ0 can be discussed by the following conditions.

(1) Interpreting (NLS) as a Hamiltonian system, spectral
conditions ensure that the Hessian of the system at ψλ0 has
only one, potentially, unstable direction.

(2) Then the slope condition asserts that :

ψλ0 is stable/unstable if

λ 7→ ‖uλ‖L2 is strictly increasing/decreasing at λ = λ0

In fact, if it is increasing then the Hessian has no real
eigenvalues, the system is linearly stable and a Lyapunov
function can be constructed to show (nonlinear) orbital
stability. If it is decreasing then the Hessian has a positive
eigenvalue and the system is (linearly) unstable.
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The spectral conditions

For λ ∈ (0, λ∞), consider the linear operators
L+
λ , L

−
λ : H2(R) ⊂ L2(R)→ L2(R) defined by

L+
λ v = −v ′′ + λv − [f (x , u2

λ) + 2∂2f (x , u2
λ)u2

λ]v

L−λ v = −v ′′ + λv − f (x , u2
λ)v

The spectral conditions required by the stability analysis are :

(S1) inf σess(L
+
λ ) > 0, M(L+

λ ) = 1, ker L+
λ = {0}

(S2) inf σess(L
−
λ ) > 0, 0 = inf σ(L−λ ), ker L−λ = vect{uλ}

where M(L+
λ ) is the Morse index of L+

λ , i.e. the dimension of the
larger subspace where L+

λ is negative definite.
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L+
λ v = −v ′′ + λv − [f (x , u2

λ) + 2∂2f (x , u2
λ)u2

λ]v

L−λ v = −v ′′ + λv − f (x , u2
λ)v

Verification

First, all the eigenvalues are simple.

Then :

• lim
|x |→∞

f (x , u2
λ) = lim

|x |→∞
2∂2f (x , u2

λ)u2
λ = 0

=⇒ inf σess(L
+
λ ) = inf σess(L

−
λ ) = λ > 0

• comparing L+
λ v = 0 with the equation for uλ, one shows that

ker L+
λ = {0} (non-degeneracy of uλ)

• uλ > 0 sol. of (SNLS) =⇒ ker L−λ = vect{uλ} and 0 = inf σ(L−λ )

It remains to show that L+
λ has exactly one negative eigenvalue.
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The local bifurcation analysis close to λ = 0 shows that
M(L+

λ ) = 1 for λ > 0 small.

By perturbation theory, the eigenvalues of L+
λ depend continuously

on λ ∈ (0, λ∞).

Since ker L+
λ = {0} for all λ ∈ (0, λ∞), the eigenvalues cannot

cross zero as λ varies

=⇒ M(L+
λ ) = 1 for all λ ∈ (0, λ∞).
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The slope condition

We will check that the function λ 7→ ‖uλ‖L2 is strictly increasing
on (0, λ∞).

Since ‖uλ‖L2 → 0 as λ→ 0 thanks to Theorems 2/5, this is true in
a neighbourhood of some λ > 0. Hence we need only verify that

d

dλ

∫

R
u2
λ dx 6= 0 ∀λ ∈ (0, λ∞)

First notice that

d

dλ

∫

R
u2
λ dx = 2

∫

R
uλ

d

dλ
uλ dx = 4

∫ ∞

0
uλξλ

where ξλ :=
d

dλ
uλ satisfies

ξ′′λ + [f (x , u2
λ) + 2∂2f (x , u2

λ)u2
λ] ξλ = λξλ + uλ
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It can be shown that
∫ ∞

0
[2f (x , u2) + x∂1f (x , u2)− ∂2f (x , u2)u2]uξ dx = 2λ

∫ ∞

0
uξ dx

(?)

and that ξ has this profil :

ξ(x)

x0 x

Supposing by contradiction that
∫∞

0 u ξ dx = 0, we can write (?) as

∫ ∞

0

[2f (x , u2) + x∂1f (x , u2)

∂2f (x , u2)u2
− 1
]
∂2f (x , u2)u3ξ dx = 0
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∫ ∞

0

[2f (x , u2) + x∂1f (x , u2)

∂2f (x , u2)u2
− 1
]
∂2f (x , u2)u3ξ dx = 0

Defining ζ(x) := 2f (x ,u2)+x∂1f (x ,u2)
∂2f (x ,u2)u2 − 1, this becomes

∫ ∞

0
ζ(x)∂2f (x , u2)u3ξ dx = 0

Now using the unique zero x0 of ξ, we can rewrite this identity as

∫ ∞

0
[ζ(x)−ζ(x0)]∂2f (x , u2)u3ξ dx+ζ(x0)

∫ ∞

0
∂2f (x , u2)u3ξ dx = 0
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∫ ∞

0

[ζ(x)− ζ(x0)]∂2f (x , u2)u3ξ dx + ζ(x0)

∫ ∞

0

∂2f (x , u2)u3ξ dx = 0

Moreover, the Lagrange identity for u and ξ yields

∫ ∞

0
u2 dx = 2

∫ ∞

0
∂2f (x , u2)u3ξ dx

and so
∫ ∞

0
∂2f (x , u2)u3[ζ(x)− ζ(x0)]ξ dx +

ζ(x0)

2

∫ ∞

0
u2 dx = 0 (??)
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∫ ∞

0

∂2f (x , u2)u3[ζ(x)− ζ(x0)]ξ dx +
ζ(x0)

2

∫ ∞

0

u2 dx = 0 (??)

Now,

∂2f (x , u2)u3 =

{
p−1

2 V (x)up in the (PP) case
p−1

2 V (x) up

(1+up−1)2 in the (AL) case

hence ∂2f (x , u2)u3 > 0 on (0,∞) in any case.

On the other hand,

ζ(x) =

{
2

p−1 [x V ′(x)
V (x) + 5−p

2 ] (PP)
2

p−1 [x V ′(x)
V (x) + 5−p

2 ] + 2
p−1 [x V ′(x)

V (x) + 2]up−1 (AL)

and we will see that ζ > 0 and ↘ in any case, contradicting (??).
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2 ] (PP)
2

p−1 [x V ′(x)
V (x) + 5−p

2 ] + 2
p−1 [x V ′(x)

V (x) + 2]up−1 (AL)

Indeed, using the hypotheses

x 7→ x
V ′(x)

V (x)
↘, x

V ′(x)

V (x)
> −b and p < 5− 2b

we have x
V ′(x)

V (x)
+

5− p

2
> 0 and ↘

Furthermore,

u > 0 and ↘ =⇒
[
x
V ′(x)

V (x)
+ 2

︸ ︷︷ ︸
>−b+2>0

]
up−1 > 0 and ↘

so that ζ > 0 and ↘ in any case, as expected.
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Theorem 6 (G., ANS 2009/EECT 2013)

Suppose that V ∈ C 1(R) is even, V ′ < 0 on (0,∞), and that

V (x) ∼ |x |−b as |x | → ∞ for some b ∈ (0, 1)

with 1 < p < 5− 2b. Suppose in addition that

x 7→ x
V ′(x)

V (x)
is decreasing on (0,∞) with x

V ′(x)

V (x)
↘ −b

Then
d

dλ

∫

R
u2
λ dx > 0 ∀λ ∈ (0, λ∞)

In particular, the standing wave ψλ(t, x) = eiλtuλ(x) is an orbitally
stable solution of (NLS) for all λ ∈ (0, λ∞).
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